Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458841

RESUMO

The pervasive use of sensors and actuators in the Industry 4.0 paradigm has changed the way we interact with industrial systems. In such a context, modern frameworks are not only limited to the system telemetry but also include the detection of potentially harmful conditions. However, when the number of signals generated by a system is large, it becomes challenging to properly correlate the information for an effective diagnosis. The combination of Artificial Intelligence and sensor data fusion techniques is a valid solution to address this problem, implementing models capable of extracting information from a set of heterogeneous sources. On the other hand, the constrained resources of Edge devices, where these algorithms are usually executed, pose strict limitations in terms of memory occupation and models complexity. To overcome this problem, in this paper we propose an Echo State Network architecture which exploits sensor data fusion to detect the faults on a scale replica industrial plant. Thanks to its sparse weights structure, Echo State Networks are Recurrent Neural Networks models, which exhibit a low complexity and memory footprint, which makes them suitable to be deployed on an Edge device. Through the analysis of vibration and current signals, the proposed model is able to correctly detect the majority of the faults occurring in the industrial plant. Experimental results demonstrate the feasibility of the proposed approach and present a comparison with other approaches, where we show that our methodology is the best trade-off in terms of precision, recall, F1-score and inference time.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Algoritmos , Indústrias
2.
Diagnostics (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810146

RESUMO

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM-recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.

3.
Sensors (Basel) ; 15(7): 16314-35, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26153775

RESUMO

The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...